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Abstract—The newly developed Trajectory Option Set (TOS), a 
preference-weighted set of alternative routes submitted by flight 
operators, is a capability in the U.S. traffic flow management system 
that enables automated trajectory negotiation between flight 
operators and Air Navigation Service Providers. The objective of 
this paper is to describe and demonstrate an approach for 
automatically generating pre-departure and airborne TOSs that 
have a high probability of operational acceptance. The approach 
uses hierarchical clustering of historical route data to identify route 
candidates. The probability of operational acceptance is then 
estimated using predictors trained on historical flight plan 
amendment data using supervised machine learning algorithms, 
allowing the routes with highest probability of operational 
acceptance to be selected for the TOS. Features used describe 
historical route usage, difference in flight time and downstream 
demand to capacity imbalance. A random forest was found to be the 
best performing algorithm for learning operational acceptability, 
with a model accuracy of 0.96. The approach is demonstrated for an 
historical pre-departure flight from Dallas/Fort Worth International 
Airport to Newark Liberty International Airport. 

Keywords-Air traffic management; trajectory option set; machine 
learning. 

I.  INTRODUCTION 
A new Traffic Management Initiative (TMI) called the 

Collaborative Trajectory Options Program (CTOP) supports a 
more complex characterization of the reduced capacity problem 
than was previously possible in the U.S. National Airspace System 
(NAS), using multiple constraints, called Flow Constrained Areas 
(FCAs).1 CTOP allows flight operators to submit a preference-
weighted set of alternative routes through and around the FCAs 
called a Trajectory Option Set (TOS), from which the program can 
select. In the development of the CTOP concept, it was envisioned 
that TOSs would not only be generated for flights pre-departure, 
but also for airborne flights [1]. This would provide the U.S. 
Federal Aviation Administration (FAA) with user preferred 
routing alternatives from which to assign strategic airborne 

                                                        
1 An FCA is a volume of airspace, along with flight filters and a time interval, 

used to identify flights. It may be drawn graphically, around weather, or may be 

reroutes, in the event that demand or capacity constraints on 
downstream FCAs changed significantly, requiring adjustments to 
the air traffic flows through the downstream FCAs. Such a 
capability would allow flight operator preferences to be 
accommodated in assigning strategic airborne reroutes, enabling 
increased trajectory negotiation between the FAA and flight 
operators, which is a key component of the future air traffic control 
system envisioned by the U.S. National Aeronautics and Space 
Administration (NASA) [2]. It may also reduce congestion and 
increase throughput by distributing traffic across the available 
airspace to a greater extent than is currently done with strategic 
advisory reroutes or playbook routes that allocate impacted traffic 
to a small number of routes. Finally, it may also increase 
predictability for airborne flights, because TOS routes could be 
chosen to avoid constraints, resulting in less need for intervention 
from Air Traffic Control (ATC) during the flight. This is, however, 
contingent on the routes being operationally acceptable. For this 
paper, operationally acceptance refers to ATC being willing to 
implement the trajectory as a flight plan amendment, if requested, 
given the conditions (including downstream) at the time. 

While CTOP is currently operational, it is not being used 
extensively. This is because relatively few flight operators have, 
as yet, invested in capabilities to generate TOSs beyond using 
Coded Departure Routes (CDRs) – formalized alternate routes by 
origin-destination pair provided by the FAA. This is in part 
because the business case is unclear, with TOS generation 
potentially increasing workload on dispatchers. Despite these 
challenges, some tools are under development by flight operators 
and third parties to aid in pre-departure TOS generation [3].  

Most Air Route Traffic Control Centers (ARTCCs, or Centers) 
do not have a specific functionality to ensure that trajectories 
proposed pre-departure are operationally acceptable. However, if 
a filed trajectory is found to be operationally unacceptable while 
the flight is enroute, the trajectory would be amended tactically. 
Generating pre-departure TOSs that have a higher probability of 
operational acceptance would increase the predictability of routing 
and timing of flights, as these trajectories would have a higher 

based on a NAS element. FCAs are used to evaluate demand on a resource, which 
may be constrained. 



likelihood of being flown without amendment. In contrast to pre-
departure reroute requests, airborne reroute requests are 
immediately reviewed by controllers, and, under certain 
conditions, by traffic managers. They would therefore be 
immediately rejected or amended were they found to be 
operational unacceptable. For trajectory negotiation using an 
airborne TOS, this could significantly increase controller and 
Traffic Management Unit (TMU) workload. It would therefore be 
desirable for flight operators to automatically generate airborne 
TOSs that have a high probability of operational acceptance. The 
objective of this paper is to describe and demonstrate an approach 
for automatically generating TOSs, both pre-departure and 
airborne, that have high probability of operational acceptance for 
implementation as strategic reroutes, given the conditions at the 
time the TOS is generated. These operationally acceptable TOSs 
are generated using hierarchical clustering of historical route data 
to identify route candidates. The probability of operational 
acceptance is then estimated using predictors trained on historical 
flight plan amendment data using supervised machine learning 
algorithms, allowing the routes with highest probability of 
operational acceptance to be selected for the TOS by the flight 
operator. 

Background literature is presented in Section II. The approach 
for generating operationally acceptable TOSs is described in 
Section III, followed by a sample application in Section IV. 
Section V discusses implications of the results, before conclusions 
and recommendations for future work are presented in Section VI. 

II. BACKGROUND 
A number of tools and concepts are under development by 

NASA to generate airborne reroute advisories, particularly 
around weather. Tools under development include the NAS 
Constraint Evaluation and Notification Tool (NASCENT) [4], 
which extends the Dynamic Weather Routes (DWR) concept 
[5,6]; Multi-Flight Common Routes (MFCR) [7]; Dynamic 
Routes for Arrivals in Weather (DRAW) [8]; and Traffic Aware 
Strategic Aircrew Requests (TASAR) [9,10]. While these tools 
generate advisory reroutes for airborne flights to avoid near term 
constraints, particularly weather, these reroutes are typically 
tactical in nature (with a look-ahead of 60 to 90 minutes). The 
tools are not tailored to generate strategic reroutes (with a look-
ahead of greater than 90 minutes) across multiple Centers, and are 
not designed to support TOS generation, whereby routes must 
avoid or intersect specified FCAs, sometimes far downstream. 
However, some of these tools do consider operational 
acceptability in the generation of reroute advisories. The TASAR 
concept [9] incorporates traffic, weather, and airspace 
information in the optimization of in-flight trajectory re-planning, 
increasing the likelihood of the resulting trajectory change request 
being operationally acceptable. NASCENT [4] incorporates 

                                                        
2 A point-out refers to the need for one controller to request that the controller 

of an adjacent sector also monitors a flight that is close to the sector boundary. 

historical usage data, similar to the approach described in [11], 
improving operational acceptance. Other algorithms and models 
have also been developed elsewhere to reroute traffic around 
constraints, e.g., using an autonomous agent approach [12], or by 
optimizing the traffic flow management problem [13,14,15]. 

Some tools for generating pre-departure TOSs are under 
development by flight operators and third parties. These typically 
apply existing techniques developed for flight planning systems 
to identify wind optimal routings through and around specified 
FCAs. These may be constrained to use an underlying “clearable 
route network” that is considered operationally acceptable, 
calculated based on historical usage of flight plan segments, such 
as that described in [3]. The approaches used for such pre-
departure TOS generation may be adaptable to airborne TOS 
generation.  

Reference [16] describes an approach that dynamically creates 
optimized flight specific reroutes to aid traffic managers in 
efficiently maneuvering flights. It is specifically designed for 
situations in which weather requires traffic managers to reroute 
flights that plan to pass through the weather, while balancing 
demand through sectors with reduced capacity or increased traffic 
volume (resulting from other flights deviating from their original 
routes). Routes are optimized using simulated annealing, given an 
operationally acceptable routing network to which they must 
conform. 

In generating the optimized reroutes in [16], a number of 
factors are considered, including route deviation distance, 
conformance of the reroute to historically flown routes, weather 
impact on the current route, sector congestion, and factors 
including required point-outs2 and inter-facility coordination. The 
routing network used for the optimization was generated by 
segmenting historically flown routes into fix-pair segments. Thus, 
all arcs in the modeled network consist of previously-flown 
connections between fixes, so each individual arc in the network 
has some level, depending on usage, of operational acceptability. 
Reroutes are constructed from these arcs using the optimization 
algorithm, and the reroutes that best meet a set of metrics of 
operational acceptability are presented as potential alternatives to 
users [17]. The Advanced Flight Specific Trajectory (AFST) tool 
developed by MITRE [18,19] incorporates many of the 
capabilities described in [16] and [17]. 

The capabilities described above generate optimized 
trajectories that comply with an underlying routing network that 
has some degree of operational acceptability, and therefore have 
applications in TOS generation. Historical flight plan and flight 
plan amendment data is used in the generation of the underlying 
routing network, while dynamic conditions impacting a flight, 
such as downstream demand and capacity, are accounted for in 



the optimization of the route. An alternative approach is to use 
supervised machine learning algorithms to train predictors in the 
operational acceptability of trajectories, based on historical usage 
as well as dynamic conditions impacting the flight. This allows 
routes to be generated based explicitly on amendments that traffic 
managers have issued in the past. The approach may therefore 
capture nuances in the way traffic managers allocate routes that 
are not captured by the list of factors explicitly considered in an 
optimization. Using machine learning may therefore increase the 
operational acceptability of the chosen routes. This alternative 
approach is the focus of the present paper. Integration with 
optimization approaches such as those described in [16] and those 
used in some commercial TOS generators may be explored in 
future research. 

The present paper extends past NASA work on predicting 
route operational acceptability. Reference [11] analyzed the 
historical usage of different flight routings in order to improve 
route acceptance for the NASA developed DWR algorithm [5,6]. 
The results suggest that historical usage is a key requirement for 
a route’s acceptance by ATC, but that requesting a reroute that 
was observed in historical data does not guarantee ATC 
acceptance. Reference [20] extended this work to develop a 
predictor of a proposed route’s operational acceptability based on 
a number of features, including historical usage, demand to 
capacity ratio in the sector in which the maneuver was to begin, 
how close to hand-off the flight was at the time of the request, 
whether the proposed route was direct or not, and how long the 
reroute was. The predictor was trained on data from a DWR trial 
at American Airlines [5], so is specific to tactical reroute requests 
from the pilot, which, unlike airborne TOSs, are not typically 
coordinated through the TMU. 

Further relevant NASA research includes [21] and [22], which 
take initial steps towards providing recommendations of available 
strategic routing options in response to convective weather, by 
examining historical data to determine which previous reroute 
options were used in similar weather and traffic conditions. 
Dominant routing structures were identified using hierarchical 
clustering, and methods were described to extract relevant 
features from the large volume of weather data to quantify the 
convective weather scenario during a particular time range.  

III. APPROACH 
This section describes an approach for a flight operator to 

dynamically generate a TOS (pre-departure or airborne) that has 
high probability of operational acceptance by ATC. The approach 
is to use clustering of historical route amendments as a static 
foundation for the operationally acceptable routes, and then to use 
a model trained on historical amendment data using machine 
learning to predict the operational acceptability of the routes in 
that set. This allows the TOS to be selected based on probability 

of operational acceptance. The approach comprises four steps, as 
follows: 

A. Identify the full set of available trajectory options from 
the origin airport or sector to the destination airport, based 
on historical flight plan amendments; 

B. Down-select the available trajectory options using route 
clustering, to define a set of geographically distinct route 
options; 

C. Use machine learning algorithms trained on historical 
flight plan amendments from across the NAS, including 
static and dynamic features, to predict the operational 
acceptance of the down-selected trajectory options; and  

D. Select the TOS based on the location of FCAs and the 
probability of trajectory acceptance by ATC. 

The approach followed for each of these steps is described in 
detail below. A sample application is described in the Section IV. 
 

A. Identify Available Trajectory Options 
The approach used for identifying available trajectory options 

for any flight is similar to that described in [11], which defined 
routing alternatives based on all historical flight plans and flight 
plan amendments from the flight’s maneuver start point to the 
destination. For the present paper, historical flight plans and 
amendments were extracted from historical Aircraft Situation 
Display to Industry (ASDI) flight data for the period from April 
to June 2015. This period was used because it is close in time to 
the sample application used, so trajectories are likely to use the 
same waypoints, and because it includes significant convective 
weather activity, like the sample application. The period is 
therefore likely to contain a diverse set of trajectory options, 
increasing the likelihood that options relevant to any specific 
convective weather scenario are discovered. All flight plans and 
flight plan amendments, from the point at which the amendment 
was made in each case, were recorded from the historical data, 
and used to generate a table of unique trajectories. A full set of 
available trajectory options can be extracted from this table given 
any flight’s maneuver start point and destination. For pre-
departure TOS generation, the maneuver start point was the 
flight’s origin airport, while for airborne TOS generation it was 
the sector in which the aircraft was located at the start of the flight 
plan amendment. In all TOS generation cases, the end of the 
maneuver was defined as the destination airport. 

B. Down-Select Trajectory Options using Clustering 
The full set of unique historical trajectories was down selected 

to a set of geographically distinct route options using clustering.  
The trajectories with the highest historical usage in each route 
cluster were chosen to define the down selected route options. 
Clustering was required to ensure that the trajectory options 
considered were suitably spaced geographically. References [23] 
and [24] describe the methods used, which apply hierarchical 



clustering with the dissimilarity metric between routes calculated 
as the Euclidean distance between routes, with each route defined 
by a fixed number (N=200) of evenly spaced points, as in (1).  

 !"# = %∑ '(") − (#)+
,
+ '.") − .#)+

,/
)01  (1) 

where d is the dissimilarity metric between trajectories i and j; 
and xin and yin are the Lambert conformal projection coordinates 
of the n’th point on trajectory i. 

The number of clusters was chosen by maximizing average 
Silhouette score 2̅, defined in (2) [23].  
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where ai is the average Euclidean distance between trajectory i 
and all other trajectories within the same cluster; bi is the smallest 
average Euclidean distance of trajectory i to all trajectories in any 
other cluster, of which trajectory i is not a member; and Nr is the 
number of trajectories. To ensure that a sufficiently large number 
of trajectory options was evaluated, a minimum number of 
clusters was also set to 15. This could be adjusted in future work.  

Reference [20] showed that high historical usage is key to 
operational acceptance by ATC. For this reason, trajectory 
options were identified from each route cluster based on historical 
usage. This required that historical usage was quantified for each 
historical route. All flight plans and flight plan amendments in the 
historical ASDI data from April to June 2015 were tracked as they 
were used to generate the table of unique trajectories described in 
Section III-A. This allowed a count to be generated of how often 
each trajectory was used in the historical data, similar to the 
approach used in [11] and [20] (described in Section II). Also 
recorded was how often the trajectories were used as amendments 
specifically, as opposed to an original flight plan, since an 
amendment matches the application in this paper, which identifies 
reroute options from the original flight plan.  

Because amendments are rarely repeated exactly, historical 
counts for many full trajectories were found to be very low. Hence 
a table was also generated of waypoint pair counts, in which 
counts of every waypoint pair used in the historical flight plan and 
flight plan amendment data from April to June 2015 was 
recorded. By identifying the waypoint pairs in any trajectory, a 
series of waypoint pair counts could then be identified. An 
alternative count was then generated for each trajectory, 
calculated as the minimum of all the waypoint pair counts for the 
trajectory. A similar count was also generated for historical use in 
flight plan amendments only. In summary, four historical counts 
were generated for each trajectory from the historical data:  

1. A count of the full trajectory as a flight plan or flight plan 
amendment;  

2. A count of the full trajectory as a flight plan amendment 
only;  

3. A minimum of all the waypoint pair counts for the 
trajectory, with waypoint pairs counted for both flight 
plans and flight plan amendments; and  

4. A minimum of all the waypoint pair counts for the 
trajectory, with waypoint pairs counted for flight plan 
amendments only.  

All four of these historical counts were used as features for 
learning route operational acceptability. However, for down-
selecting the trajectory options, only the trajectory with highest 
minimum waypoint pair count (3 in the list above) in each cluster 
was extracted as a trajectory option for further analysis.  

C. Predict Operational Acceptability using Machine Learning 
The approach used in [20] (described in Section II) was 

adapted to build a model that predicts the operational 
acceptability of the most commonly flown route in each trajectory 
option cluster, based on a number of features describing its 
historical usage, downstream demand to capacity imbalance, and 
increase in flight duration relative to the original flight plan. For 
this paper, a single model was developed for the whole NAS. 

Training data is required to develop a predictor of operational 
acceptability. Training data was generated by extracting 
appropriate flight plan amendments from historical data from July 
to September 2015. This represents a late summer period when 
there was significant convective weather activity, but does not 
overlap with the period used to identify historical usage. Flight 
plan amendments are made in response to both strategic decisions 
by the TMU and more tactical decisions by the controller.  

TMU initiated flight plan amendments are typically for flow 
management, including pre-departure route changes for weather, 
playbook and other mandatory reroutes, reroutes in response to 
sector volume, and reroutes for fix balancing [25]. Controller 
initiated flight plan amendments include reroutes for spacing and 
separation, and pilot requests for deviation to avoid weather [20]. 
TOSs are typically used for flow management, requiring TMU 
decision making. It is therefore likely that airborne TOSs must be 
acceptable to traffic managers. Traffic managers have access to 
more information than controllers, particularly with regard to 
downstream demand and capacity. To ensure that the chosen 
airborne TOS is acceptable to traffic managers, it is desirable to 
train the predictor on flight plan amendments that implement 
TMU decision making specifically.  

Unfortunately, no information is recorded on who makes the 
decision leading to a flight plan amendment. To work around this 
issue, flight plan amendments were filtered to exclude direct 
routing (direct routings are typically pilot requests), and any 
routing changes that do not extend across multiple Centers (and 
are therefore likely used for tactical avoidance of weather or for 
spacing and separation) [25]. While this approach does not filter 
out all controller initiated reroutes, and may filter out some TMU 
initiated reroutes (especially intra-facility TMU route 



amendments), the remaining reroutes are likely to be 
predominantly TMU-initiated.  

Two-class classification, which produces better performing 
predictors than one-class classification, requires both ‘positive’ 
and ‘negative’ training data, for which reroutes were either 
operationally acceptable (positive data) or unacceptable (negative 
data). A total of 3,443 historical flight plan amendments from July 
to September 2015, with the controller initiated reroutes filtered 
out, represent the positive training data for the development of the 
predictor. Unfortunately, negative training data – operationally 
unacceptable reroutes that were rejected by the TMU – are not 
recorded by the FAA, and were not available. Negative training 
data was therefore generated artificially. This was done by 
identifying potential alternative amendments, for each flight plan 
amendment made, that were not implemented, as described 
below. These alternative amendments could be operationally 
acceptable in general but not for the given weather, traffic and 
airspace situation in question.  

Historical data and clustering were used to generate potential 
alternatives for each amendment in the same way that trajectory 
options were generated, described above. In order to ensure that 
the alternative amendments generated were not only 
geographically distinct from each other, but also from the original 
flight plan, the original flight plan was also assigned to a cluster, 
so that the cluster containing it could be dropped. The trajectory 
with highest historical usage (based on minimum waypoint pair 
count in Section III-B) was then extracted from the remaining 
clusters, to define the alternative amendments. If any of these 
alternative trajectories matched the actual reroute implemented, it 
was also dropped. Because none of the remaining alternative 
amendments were implemented by the traffic manager, they were 
considered to be operationally unacceptable, and were used as 
negative training data. In reality, it is possible that these routes 
would have been acceptable, but were either not requested or not 
chosen for implementation. The model trained on this data 
therefore captures the TMUs decision making on both operational 
acceptance, and choice of which operationally acceptable route to 
implement. Between 1 and 5 alternative amendments were 
generated for each historic flight plan amendment in July 2015, 
with a total of 5,913 alternative amendments generated. A total of 
9,356 observations (positive and negative) were therefore 
available.   

A number of features were calculated for each amendment 
(actual and alternative) in the training data. These features 
describe historical usage, downstream demand to capacity 
imbalance, and increase in flight duration relative to the original 
flight plan. They are described in detail below. 

Historical usage was calculated as described in Section III-B, 
with all four metrics included as features (full trajectory count, 
full trajectory count as a reroute, minimum waypoint pair count, 
and minimum waypoint pair count as a reroute). Also included as 

features were the difference in count between the original route 
and the amendment (for each of the four metrics). Eight features 
were therefore included describing historical usage. Because 
historical usage was also used to identify the trajectory options 
for which operational acceptability is to be predicted, these 
features were not expected to dominate in the way they did in past 
work [20]. 

For each amendment, demand was calculated for each sector 
downstream of the maneuver start point. Demand was defined as 
the number of flights predicted to be in each sector, estimated as 
described by [20] using the Future ATM Concepts Evaluation 
Tool (FACET). This required that flight demand in each 
downstream sector be predicted for each amendment in the 
training set based on what was known when the flight plan 
amendment was implemented. Demand was therefore predicted 
based on the position, speed and flight plan of airborne aircraft 
and departure times and flight plans for flights still on the ground, 
at the time the flight plan amendment was made.  

Capacity was calculated for all downstream sectors on each 
amendment in two separate ways – firstly based on the Monitor 
Alert Parameter (MAP), which is an estimate of how many 
aircraft can be reasonably controlled in a sector in clear weather, 
and secondly by the weather impact on the sector. The latter was 
estimated using the percentage overlap between weather polygons 
generated using the Convective Weather Avoidance Model 
(CWAM) [26] and the sector. CWAM polygons are based on 
probabilistic weather avoidance fields, which represent regions of 
airspace that pilots are likely to avoid due to the presence of 
convective weather. While traffic managers do not always use 
CWAM when making decisions about trajectories, it provides a 
good proxy for the weather products and other factors that are 
considered, which may include how fast the weather is moving, 
what direction it is moving, how it is developing, and the extent 
to which pilots may be able to vector through the weather etc. 
CWAM includes forecasts in 15-minute increments, for up to 2-
hrs into the future, and includes polygons for different 
probabilities of deviation – 60%, 70% and 80% – across a range 
of altitudes. For each amendment, the predicted sector entry times 
were used to extract the appropriate CWAM polygons for up to 
2-hrs into the future, over an altitude range from 30,000ft to 
40,000ft. Capacities were calculated using each of the 60%, 70% 
and 80% polygons, and included as separate features. For sectors 
further than 2-hrs in the future, the capacity was assumed to be 
unaffected by weather. In future work, more strategic weather 
forecasts, such as the CDM (Collaborative Decision Making) 
Convective Forecast Planning (CCFP) forecast, which extends up 
to 6-hrs into the future, will be included. However, it is unclear to 
what extend these highly strategic forecasts are considered by 
traffic managers when rerouting aircraft, because they are so far 
in the future, and therefore have high uncertainty associated with 
them. 



A number of features were calculated describing the 
downstream demand to capacity imbalance for each amendment. 
Because the reroute options are likely in response to capacity 
overload downstream, either created by traffic demand or weather 
blockage, these features were defined as follows:  

1. The maximum ratio of predicted sector demand to 
capacity across all sectors downstream;  

2. The average ratio of predicted sector demand to capacity 
across all sectors downstream;  

3. The total number of downstream sectors with predicted 
demand exceeding capacity;  

4. Whether or not any downstream sector had a ratio of 
predicted demand to capacity greater than unity; and 
finally  

5. A metric comparing the sum of predicted demand to 
capacity ratios for the amendment to that of the original 
route, calculated as in (3): 

 ∆?@9A/C= ∑ AD
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where SO and SA represents the set of sectors on the original route 
and amendment, respectively; Ds represents the predicted demand 
in sector s; and Cs represents the capacity of sector s. Each of these 
features was calculated with capacity defined by the sector MAP, 
and with capacity defined by the sector MAP reduced by the 
degree to which the CWAM polygon overlaps the sector, as 
described in (4).  

 GCHIJ = GJIK ∙ (1 − 2OPQRS	GUVW	XYOSZ[\) (4) 

Because there are three different definitions of sector CWAM 
overlap, depending on probabilities of deviation, a total of 20 
features (5 based on CMAP and 15 based on CCWAM) describe 
demand to capacity imbalance. 

Downstream weather impacts were also included explicitly as 
features. This was done by including the following features: 

1. The maximum predicted sector CWAM overlap 
downstream;  

2. The average predicted sector CWAM overlap 
downstream;  

3. The total number of sectors with predicted sector CWAM 
overlap greater than zero downstream;  

4. Whether or not any downstream sector had a predicted 
sector CWAM overlap greater than zero downstream; and  

5. The difference between the sum of predicted sector 
CWAM overlaps downstream for the amendment and for 
the original route.  

These five features were calculated with CWAM polygons at 
each of the three values of probability of pilot deviation, resulting 
in a total of 15 downstream weather impact features. 

For many amendments, the weather impacting the route is 
well downstream, requiring forecasts of weather impact hours in 

advance. However, forecasts of this type are not typically very 
accurate at the sector level, because of the small size of a sector. 
They are, however, more accurate at the Center level. Therefore, 
the features listed above were also included describing CWAM 
Center overlap, as opposed to CWAM sector overlap. In the 
available data, Center CWAM overlap was only calculated for a 
probability of pilot deviation of 60%, so only 5 features were 
added describing weather impact at the Center level. 

The flight duration of the amendment was also included as a 
feature, along with the change in flight duration relative to the 
original flight plan. The number of downstream sectors between 
the maneuver start point and the destination was also included, 
along with the difference in number of downstream sectors 
between the amendment and the original route. This added 4 
features to the total feature list, resulting in a total of 52 features.  

A number of machine learning algorithms were trained on the 
developed feature set using the Python sklearn library [27]:  

• Logistic regression – with C, the inverse of regularization 
strength, set to 2.5;  

• Multi-layer perception neural network – with two hidden 
layers, each with a depth of 100 neurons, logistic 
activation functions, and the alpha L2 penalty 
regularization term set to 0.001; 

• Support Vector Machine (SVM) – with linear kernel, and 
penalty parameter C set to 1.0; 

• SVM – with sigmoid kernel, and penalty parameter C set 
to 0.5; 

• Random forest – with 100 estimators; and  
• Adaptive Boost – with 200 estimators.  

All model parameters were set as default in the sklearn Python 
library, with the exception of those listed above, which were set 
based on best model performance, training and testing each 
algorithm on a range of values for each parameter. Because more 
negative training data was used than positive training data 
(between 1 and 5 negative alternative amendments were 
generated for each positive observed amendment), the dataset was 
imbalanced, with 36.8% of observations positive and 63.2% 
negative. The Synthetic Minority Over-Sampling Technique 
(SMOTE) [28], which artificially generates observations for the 
minority class (in this case the positive class) based on the 
existing observations, was therefore used to balance the dataset, 
for improved model performance. K-fold cross-validation, with 
K=10, was used to estimate the performance of the different 
models, which are presented in Table I. 

A number of metrics were considered. Accuracy, which 
measures the fraction of correct predictions from all predictions 
made, is the most intuitive, but can be misleading when datasets 
are imbalanced. An alternative metric is F1-Score (also called F-
Score or F-Measure), which is the harmonic mean of precision 
and recall, calculated as in (5).  



 1̂ = 2 ∙
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  (5) 

Here precision refers to the number of elements correctly 
labeled by the model as belonging to the positive class divided by 
the total number of elements labeled by the model as belonging 
to the positive class (i.e., the fraction of retrieved instances that 
are relevant). Recall refers to the number of elements correctly 
labeled by the model as belonging to the positive class divided by 
the total number of elements that actually belong to the positive 
class in the data (also called Sensitivity or True Positive Rate). 
Accuracy, recall, precision and F1-Score vary from 0 to 1, with 1 
being best. The discrimination threshold for all these metrics is 
set to 0.5, giving equal importance to both classes.  

A Receiver Operating Characteristic (ROC) curve plots recall 
against false positive rate across varying discrimination 
thresholds. The area under the curve (AUC) provides a metric of 
model performance ranging from 0 to 1 (1 being best) that is not 
a function of the chosen discrimination threshold. When using 
normalized units, AUC indicates the probability that a classifier 
will rank a randomly chosen positive instance higher than a 
randomly chosen negative one (assuming positive ranks higher 
than negative) [29].  

The results in Table I indicate that the feature set developed 
is very effective at predicting the observed data. The model with 
highest accuracy (0.96), precision (0.93), F-Score (0.94) and 
AUC (0.99) was the random forest, so this model was used for 
evaluating the trajectory options in the sample application. The 
other models also performed well across all metrics.  

The relative importance of each feature can be evaluated using 
the average rank of the features used as decision nodes in each 
predictor tree in the random forest. These average ranks are 
shown for the top 10 features in Table II. The most important 
features were identified accordingly to be the differences in flight 
duration, demand to capacity imbalance (particularly accounting 
for the impact of downstream weather on sector capacity), and 
number of sectors traversed, between the amendment and original 
route. Trajectories are therefore predicted to have high probability 
of acceptance when they deviate relatively little from the original 
routing, but pass through sectors that have less CWAM polygon 
overlap than the original routing. Features that have lower 
importance include the historical usage of the specific routes, and 

the downstream weather impact on capacity, without 
consideration of demand (in the form of sector and center CWAM 
polygon overlap), neither of which appear in the list in Table II.  

The best performing of the applied machine learning 
algorithms was used to categorize each of the available trajectory 
options identified in Section III-A as operationally acceptable or 
unacceptable, outputting a percentage probability of acceptance.   

D. Select the TOS based on Probability of Acceptance 
CTOP currently limits the number of trajectory options that 

can be submitted within a TOS to five. While this may change in 
the future, and may be different for airborne TOSs, for this paper 
one trajectory option was generated through each active FCA, 
which define the constrained region of airspace, and one around 
all active FCAs, on either side. Therefore, for a single FCA, three 
trajectory options were chosen. If the original trajectory routed 
through the FCA, this was included as one trajectory option, 
leaving two to be identified either side of the FCA.  

A trade-off must typically be made between cost efficiency 
and operational acceptability. In this paper, the focus is on 
maximizing operational acceptability, under the conditions at the 
time the TOS was generated. Hence, the final TOS was selected 
based on maximizing probability of operational acceptance, 
predicted in Step C. This is in contrast to the approach in [16] and 
in some commercial TOS generators, which optimize for cost, 
subject to a pre-calculated clearable route network. In future 
work, these approaches could be combined.  

IV. ANALYSIS OF PRE-DEPARTURE SAMPLE APPLICATION  
An operationally acceptable TOS was generated for an 

historic pre-departure flight scheduled from Dallas/Fort Worth 
International Airport (DFW) to Newark Liberty International 
Airport (EWR), on July 12, 2015 at 13:06Z. For the example 
application, one FCA was assumed to be set, at the boundary of 
Memphis and Indianapolis Centers (ZME and ZID, respectively), 
because of convective weather. The original flight plan, FCA and 
convective weather before departure (in the form of CWAM 
polygons, with yellow boundaries representing 60% probability 
of deviation, orange 70%, and red 80%) are shown in Figure 1, 

TABLE I. MACHINE LEARNING ALGORITHM PERFORMANCE IN PREDICTING 
OPERATIONAL ACCEPTANCE OF TRAJECTORIES FROM JUNE TO SEPTEMBER 

2015. 
 

Logistic 
Regression 

Multi-
Layer 

Perceptron 

SVM-
Linear 
Kernel 

SVM-
Sigmoid 
Kernel 

Random 
Forest 

Ada 
Boost 

Accuracy 0.95 0.94 0.96 0.88 0.96 0.95 
Recall 0.97 0.94 0.97 0.87 0.95 0.96 
Precision 0.91 0.91 0.92 0.82 0.93 0.92 
F1-Score 0.94 0.92 0.94 0.84 0.94 0.94 
AUC 0.99 0.99 0.98 0.93 0.99 0.99 

 

TABLE II. RELATIVE IMPORTANCE OF FEATURES, DERIVED FROM A RANDOM 
FOREST. 

Feature Importance 
Change in flight duration 0.21 
Change in sum of sector demand/reduced capacity – 60%  0.12 
Change in number of sectors traversed 0.11 
Change in sum of sector demand/reduced capacity – 80% 0.11 
Change in sum of sector demand/MAP 0.07 
Change in sum of sector demand/reduced capacity – 70% 0.06 
Number of sectors in amendment 0.05 
Amendment duration 0.03 
Change in sum of Center CWAM overlap – 60% 0.03 
Maximum sector demand/MAP of amendment 0.02 

 



along with the flight plan amendment implemented on July 12, 
2015, to avoid the weather.  

A. Identify  Available Trajectory Options 
A total of 73 trajectory options were extracted from the 

historical data processed (April to June 2015) for the sample 
application.  

B. Down-Select Trajectory Options Using Clustering 
As described in Section III-B, clustering was used to ensure 

that the trajectory options selected for the TOS were suitably 
spaced geographically, and to reduce the number of trajectory 
options for which operational acceptability must be predicted. All 
trajectory options identified in Section IV-A for the sample 
application were therefore clustered as described in Section III-B. 
Forty-seven clusters were extracted. The most commonly flown 

route in each cluster is shown in Figure 2 for the clusters 
identified.  

C. Predict Operational Acceptability using Machine Learning 
Operational acceptability was predicted for only the most 

commonly flown routes in each cluster. The probability of each 
of the trajectory options identified for the sample application 
being operationally acceptable was calculated using the trained 
random forest model. The results are shown in Figure 3(a), with 
the probability of acceptance shown by color. Sectors with 
demand predicted to exceed the MAP value are shown in yellow, 
while CWAM polygons when the amendment was implemented 
historically are also shown. The FCA is also shown, on the 
boundary of ZME and ZID in Figure 3. There is a wide range in 
plotted probability of acceptance, varying from 0.1 to 0.85.  

  
Figure 1. Sample application for generating operationally acceptable TOS for 

pre-departure flight from DFW to EWR on July 12, 2015, at 13:06Z.  

 

KDFW

KEWR

FCA

Original Flight Plan

Historical Amendment

  
Figure 2. Available trajectory options for pre-departure TOS from DFW to 

EWR.  

 

KDFW

KEWR

  
(a)         (b) 

Figure 3. Estimated probability of acceptance for trajectory options in pre-departure sample application from DFW to EWR on July 12, 2015 at 13:06Z: (a) all 
trajectory options and (b) chosen trajectory option set. 
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The longest trajectories, to the north and south, have 
probabilities of acceptance of 0.4 or lower. The shortest trajectory 
options, which deviate least from the original routing but route 
through the forecast convective weather, have probabilities of 
acceptance of 0.6. The trajectories with highest probability of 
acceptance – between 0.7 and 0.85 – lie in between, routing close 
to the original route, but not through the forecast convective 
weather. These results indicate the dominant effect of flight 
duration and demand to capacity imbalance, accounting for the 
impact of downstream weather on sector capacity, in the trained 
algorithm. 

D. Select the TOS based on Probability of Acceptance 
The trajectories with highest estimated probability of 

acceptance either side of the FCA were chosen for the TOS, and 
are shown in Figure 3(b). The northerly trajectory has a 
probability of acceptance of 0.85, and very closely matches the 
reroute given to this flight historically. The southerly trajectory 
has a probability of acceptance of 0.76.  

V. IMPLICATIONS OF RESULTS 
The machine learning test results in Table I indicate that, 

given the limited testing completed to date, operational 
acceptability may be predictable with high accuracy. This 
suggests that a tool such as that developed could be useful in TOS 
generation.  

The feature importance results in Table II indicate that the 
features describing differences in flight duration, demand to 
capacity imbalance (particularly accounting for the impact of 
downstream weather on sector capacity), and number of sectors 
traversed, between the amendment and original route, are the 
most important. In fact, with only the top four features, the model 
accuracy is 0.95 (compared to 0.96 with all features). It makes 
sense that these features dominate, because traffic managers are 
expected to minimize any increase in flight duration, while 
avoiding sectors with high capacity to demand imbalance. The 
implication, however, is that a heuristic that accounts for only 
these factors may be sufficient to improve operational 
acceptability of TOSs.  

Downstream weather impact on capacity, without 
consideration of demand, and historical usage do not show high 
importance in Table II. The former indicates that traffic 
managers consider demand to capacity imbalance. The latter is 
expected because the underlying set of trajectory options 
considered already filter for routes with high historical usage. 
This result does not therefore indicate that historical usage is 
unimportant. 

In the sample application presented in Figure 3, the TOS 
selection is clear, with large differences in probability of 
acceptance between trajectories. However, this is a relatively 
simple problem, with clearly alternatives around the weather. In 

more difficult weather problems that were tested, with less clear 
alternatives around the weather, there were fewer trajectories with 
high probability of acceptance, which is to be expected.  

VI. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 
WORK 

Trajectory negotiation between the ANSP and flight operators 
is likely to be a key component of future air traffic control 
systems. The objective of this paper was to describe and 
demonstrate an approach for automatically generating TOSs, both 
pre-departure and airborne, that have high probability of 
operational acceptance as strategic reroutes, given the conditions 
at the time the TOS was generated.  

An approach was developed that uses hierarchical clustering 
of historical route data to identify route candidates, for which 
operational acceptability can then be predicted using models 
trained on historical flight plan amendment data using supervised 
machine learning.  

Features used to classify trajectories as operationally 
acceptable or not described historical route usage, change in flight 
duration relative to the original route, downstream demand to 
capacity imbalance, and changes in these conditions relative to 
the original route. These data are not readily available, and had to 
be generated using simulation and historical data. Key challenges 
were the identification of relevant TMU initiated reroutes for 
positive training data, and the generation of artificial negative 
training data, which are not otherwise available.  

While all models tested performed well, a random forest with 
synthetic minority class oversampling was found to be the best 
performing algorithm for learning operational acceptability from 
three months of historical flight amendment data (July to 
September 2015) and one month of artificially generated 
alternative amendments that were not flown (July 2015). Model 
accuracy was 0.96, F1-Score 0.94, and AUC 0.99. This indicates 
that the operationally acceptability of strategic reroutes is 
predictable. The most important features were identified to be 
differences in flight time, demand to capacity imbalance 
(particularly accounting for the impact of downstream weather on 
sector capacity), and number of sectors traversed, between the 
amendment and original route.  

The approach was demonstrated for an historical pre-
departure flight from DFW to EWR. The approach was able to 
identify routes either side of the FCA with the highest probability 
of operational acceptance, and the chosen trajectory options can 
be seen to limit increases in flight time relative to the original 
route, while reducing the overlap with forecast convective 
weather. In future work, the models and approach will be refined 
and can be expanded to optimize flight trajectories based on 
operational conditions, such as wind, to produce efficient routes 
that have a high probability of operational acceptance. 
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